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I. Introduction 

For many problems associated with the field of ballistic 
mechanics experimental methods required for model evaluation 
are very difficult to control in practice and are, in addition, 
very expensive to perform. Furthermore, It is very difficult, 
if not impossible, to obtain time dependent information experi- 
mentally on the state within solid materials. Thus, in many 
instances it is imperative that one use a numerical model which 
simulates the physical experiments to predict the required in- 
formation. 

The first step in the construction of the model is to define 
the governing differential equations. A more difficult task is 
to choose a numerictl method which is used to replace the differ- 
ential equations by a finite difference form; the resulting equat- 
ions must be solved on a high speed digital computer.  The main 
features that one strives for in the design of a numerical model 
are the attributes of accuracy, economy and ease of operation of 
the code for the designer-user.  High velocity Impact phenomena 
leads to very severe material distortions. The computer model 
presented in this report has beer used to predict deformation 
states for problems in which the striking velocity lies in the 
range of 0.2-4.0 km/sec. For very much lower impact velocities 
computation times may become extreme; there does not appear to be 
a restriction on the method for higher Impact velocities. As a 
result of difficulties associated with Lagrange methods when large 
distortions are present, it was felt that an Eulerian formulation 
was desirable. 

Eulerian codes are characterized by a mesh which is fixed in 
space for all time; the material "flows" through this mesh. As 
such the Eulerian method has the intrinsic capability of represent- 
ing numerical solutions to problems with large deformations over 
long periods of time without incurring the Lagrangian penalty of 
mesh distortion. As a result of maintaining the uniformity of the 
mesh the accuracy of the method is preserved and the need of opera- 
tor intervention for rezoning the calculation is eliminated. In 
this paper we shall describe the key elements of an Eulerian code 
for ballistic problems which is second order accurate. 

As is well known, and unless special care is taken, diffusion 
of one material into another material can occur in an Eulerian for- 
mulation. To prevent such diffusion between materials all moving 
surfaces which bound each domain are defined by material particles 
(called tracer particles) that are taken to be the end points of 
piecewise linear segments which approximate the boundary.  These 
particles can move freely throughout the fixed Eulerian mesh; their 
motion is determined by ordinary differential equations.  Although 
a Lagrangian calculation is necessarily introduced, the usual re- 
zoning difficulties associated with such a formulation are simply 

-1- 

r I  



solved since the problem is reduced to the redistribution of mesh 
points along a line which uses arc length as the independent vari- 
able.  On this string one need not conserve quantities when re- 
zoning is performed;  indeed rezoning just requires maintaining 
uniform spacing of the particles. At free surfaces and interfaces 
the correct boundary conditions are imposed with no integration 
performed across boundaries separating materials. 

The asymptotic accuracy of finite difference methods is 
measured by their order of accuracy.  For a first order scheme 
the error is halved when the mesh spacing is halved. For a sec- 
ond order method halving the mesh spacing results in errors that 
are one quarter their previous value.  Numerous comput ttional ex- 
periments have verified that the extra accuracy associated with 
second order methods more than compensates for the additional work 
required.  This accuracy can be utilized in two ways.  One can fix 
the mesh spacings based on computer storage facilities and specific 
problem resolution requirements; the higher order methods will yield 
greater accuracy. Alternatively, one can fix the accuracy desired. 
In this case second order methods will need fewer zones compared to 
first order methods. As a result of the dependence of the time step 
on the mesh spacing, for explicit methods, less computer time is 
required for the specified accuracy. 

In addition to being second order, the code that has been de- 
veloped, called SMITE, uses a dissipative scheme in divergence form; 
hence shock waves imbedded within the flow region are treated auto- 
matically and with the correct jump conditions.  This result is ob- 
tained because mass momentum and energy are conserved by the differ- 
ence equations.  Our model has been formulated in the cylindrical 
coordinates (z,r). 
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II. General Modeling ConBlderations 

The differential equations describing the behavior of a 
continuous media involve both spatial and temporal derivatives 
of material properties.     In order to compute the rate of change 
of certain of the variables one requires a knowledge of certain 
spatial derivatives. 

The accuracy of the temporal changes depends not only on the 
accuracy of the difference scheme but also on the resolution of 
the mesh in the neighborhood of  the regions of greatest variation 
in the solution.     Such regions where functions can vary very rapidly 
on a length scale, which may be small compared to a characteristic 
length  in the region where the differential equations are  solved, 
is called a boundary layer. 

It is obvious that imposing a fine mesh uniformly over  the 
region of  integration,   so as  to represent the  function numerically 
by its values on the computational mesh,   is an inefficient proce- 
dure.     The fine grid spacing in the smooth region of  the function 
is unnecessarily accurate and  leads  to large computational  times. 

Let r«a be a  line  in a region where the function is  slowly 
varying while r=0 be a  line in the boundary layer.     Then the mesh 
spacing at r=0 should be less than the spacing at r-a by a  factor 
d/a<l.     One example used  to achieve such spacing  is a  logarithmic 
variation of the mesh given by 

.     #b+(a-r). 
i-i-^EEEt!     , b.   1 ,2.,) 

Here L is a measure of the number of mesh points desired in 
the r direction and d is the length scale over which the solution 
exhibits its largest variation.  The function 3(r) is the change 
of variables such that &  is monotonic and most rapidly increasing 
in the thin boundary layer and more slowly increasing, with in- 
creasing r, in the region where the solution is smooth. With a 
suitable choice of ß, such as the example (2.1), there will no 
longer appear in the functions which are approximated on the differ- 
ence mesh, and which are considered to depend on the independent 
variable ß, a boundary layer type of structure. 

SMITE has, at present, a transformation for z which introduces 
the new coordinate a through 

a = D [z - g.h(r)] ; (2.2) 
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this transformation has been used primarily for modeling cot.ical 
shaped charges. The slope cf a cone in the physical plane is g 
while h is used as a measure of the size of the cap at the vertex 
of the cone.  In all subsequent discussion q and h are chosen such 
that a = Dz is the transformation with D a conversion for centi- 
meters into coordinate lines. The choice of parameters used in 
transformations (2.1) and (2.2) is described in Section VI. 

The basic equations of hydrodynamics require, at each time 
step, the evaluation of the divergence of the flux of the con- 

served physical quantities, i.e. g-^ and ^  . Under the condition 

of coordinate substitution mentioned above in which 3=6(r), I.e. 
Equation (2.1), the divergence of the flux becomes 

dq_dgdl5 f dt_dt      da 

We find that, in the case of (2 1), 

3ß _ d3 _  2Lb       1 
Sr - ür  ,  b+a . 2 ,   .2 log g^ b -(a-r) 

which shows that the me&h spacing in cylindrical coordinates is 
2     2 proportional to b -(a-r) .  Hence, as r varies from zero to a the 

2  2 2 mesh spacing varies from b -a , the smallest variation to b which 
is the largest variation 

The introduction of such coordinate transformations introduces 
the concept of a computational plane (coordinates a-ß) in which the 
grid is uniform but whose image in the physicaJ plane (coordinate 
z-r) is dense in the boundary layer region and gets progressively 
sparae in regions where gradients in the solution are small.  This 
results in economical use of the computing time. 

Through application of the chain rule, it is possible to trans- 
form the divergence free equations from the physical space z-r to 
the computational plane a-ß in such a manner that the new equations 
are still in divergence free form.  A direct consequence is that 
internal shocks will be computed with the correct jump conditions 
in the computai-ional plane. 

The difference schemes that we use to approximate the diver- 
gence form of the differential equations requires a nine point 
rectangular lattice on the initial data plane at time level, t. 
Symmetrically placed about the point (i,j), at which we wish to find 
the functions which constitute the solution, are eight nearest 
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neighbors whose position is defined by translations about (lAz, jAr) 
by lAz and ±ar. Nine point stencils which are entirely inside the 
domain of integration at time t are updated to time t+At on the 
basis of a two step difference algorithm (see Section 4). 

For mesh points near boundaries the nine point stencil required 
by the two step method is no longer completely contained within the 
domain of integration.  In this case we no longer consider the di- 
vergence form for the differential equations but instead solve a 
quasilinear system of equations derived from the conservation equa- 
tions for the unknown functions.  The solution at these points is 
updated by a non-linear version of the Lax-Wendroff method.  This 
method allows one to take into account in the difference equations 
the non-centered spacing required as a result of the boundary cross- 
ing between adjacent points of the stencil. This non-centering occurs 
in the difference formulas since data along the boundary must now 
be used instead of data at regular mesh points. As any of the eight 
nearest neighbors can be excised from the stencil by the boundary, 
there exists 256 possible ways of updating the solution at these 
"irregular mesh points". Since many of these truncated stencils are 
mirror images of each other, the required logic can be minimized. 

In order to calculate the non-centered space differences to 
the first and second derivatives, we must know the position of the 
boundary together with the value of the dependent variables at all 
crossings of the boundary with coordinate mesh lines.  This is 
accomplished by interpolation from the material particles defining 
the boundary, care being taken to account for possible multiple 
crossings of the boundary with a given coordinate line.  Once all 
spatial differences are known to second order the solution at time 
t+At is calculated by a truncated Taylor Series for the unknown 
vector function W(t+At) about time t, keeping all terms through 
second order. 

The moving boundaries consist of segments which satisfy either 
free surface conditions or contact discontinuity conditions.  In 
addition, there may exist fixed boundaries some of which are lines 
of symmetry; here we use the usual reflection conditions to advance 
the solution. At such fixed boundaries the solution is reflected 
across the boundary to image points which allow the use of regular 
difference equations on the boundary.  All surfaces, which move 
through the Eulerian mesh, are marked by material particles which 
obtain velocity components from the interior of the domain; their 
motion is governed by Lagrangian equations which are integrated at 
each time step to predict the new boundary position. 

In the next sections we make a more detailed discussion of 
the above general considerations. 
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III. Basic Differential Equations 

a)  Axisynunetric Elastic Model 

When a material supports shear stresses,  it is necessary to 
include,   in addition to the pressure forces,   terms which account 
for the presence of  these stresses.     The equations of motion for 
such a material can be derived by applying the physical  laws de- 
scribing the conservation of mass,  momentum and energy  to a finite 
element of  the material body.     In addition,  a statement of  the 
stress-strain relationship of the material is required.     For this 
paper a  linear  theory is assumed,   i^e.  material bodies will satisfy 
Hooke's  law.     Then  these laws may be usefully written as a set of 
partial differential equations  in a cylindrical coordinate system, 
as follows.     If  the substantial or particle derivative  is defined 
as 

d 
at 5T + u Ti + v 37 

then the conservation of mass can be written  in terms of  th>j! density 
(the mass per unit volume)   p,  and  the divergence of the velocity 
field, with components u and v in the  z and r direction respectively, 
as 

dp 
dt -p<lf^ 3v 

9r F' O.a.l) 

The two momentum laws reflect the appearance of the stress 
components T 

ij 
The axial momentum equation is 

„du 11 paF - Tr~ 
a? 12 12 
3r (3.a.2) 

and the radial momentum equation is 

dv 
Pdt {1.a.3) 

The evolution equation for the internal energy, e, per unit 
volume is given by 

de pat 
8u 3v ,3v   .   3u, 

^ll   9z       T22 är       T12   KJz       gp 
3v 
ar 
v(T1i+T99+3p) 11   l22 (3.a.4) 
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The stresses required In the above relations must be obtained 
from the strains and strain rates„     The linear stress-strain laws, 
with correction for rotation, are usually written In terms of de- 
viator  stresses S. ..    The rate of change of the stress component 
Si.  are given In terms of the strain rate, &.., via 

 11 _  2u   /03u       3V       v.    . ,30       3V. ,,   _   c» 
St ^ (237 " ä^ " ?>   + T12   lJi ' a2> (3.a.5) 

dS12 .      .au   .   3V,       S11"S22   ,3u      3v. .,   o   ,. 
St ^(7F + T?1 2   (57 " Jz5 (3.3.6) 

dS22 _  2u   ,93v _  3u      v.   _  T      ,3u       3v. ,,  a   7. 
at J (237      37     F5       T12(5r      W (3.a.7) 

dS33 s _ 2u   ,3u      3v _  2vv n a  81 
at 3   (37 +  3?      "' (3.a.8) 

The above Hookian laws.  Equations   (3oa.5)-(3.a.8),   are connected 
to the evolution laws   (3.a.l)-(3<>a.4)   by the algebraic conditions 

Tij  = £ij - P6ij 6ij  =  1  for i = j 

= 0 otherwise (3.a.9-3.a.11) 

The pressure p is related to the density p and specific in- 
ternal energy e through the equation of state 

p = P(p,e) (3.a.12) 

The above set form a system of twelve equations for the twelve un- 
knowns p,u,v,e,p,T11,T12,T22,T33,S11,S22 and S33. 

At this point we show that Equations (3.a.l)-(J.a.12) form a 
system which is not self consistent. 1o  see this add Equations 
(3.a.5), (3.a.7) and (3.a.8).  It is clear then that the sum 

3 

I S.. satisfies 
1=1 11 

ft (S11 + S22 + S33) = 0 (3.a.13) 
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which implies that the sum of these stress deviators is a constant 
of the motion of the material,- without loss of generality this 
constant can be taken to be zei •>  for at t=0 each S. .=0. Thus 

2  S.. = 0 (3.a.14) 
i=l 11 

for all time. 

Now if we sum Equations (3.a.9) through (3.a,11) for i=j, we 
obtain the relation 

Tll + T22 + T33 = Sll + S22 + £33 " 3p  (3-a-15) 

which yields, after satisfying Equation (3.a.14), 

Tll + T22 + C33 ^ " 3P (3.a.16) 

Equation (3.a.16) states that the pressure p is determined by the 
mean of the stress tensor.  This is a contradiction of Equation 
(3.a.12) which states the pressure is a function only of the density 
and internal energy. 

Hooke's laws can be written in the form 

T.. = 2Me.. + AZe..     i = 1,2,3      (3.a.17) 
ii     ii    j ]] 

Hj = ^ij 

Here \i  is the shear modulus of the material, A is a Lame constant 
ain e.. is defined by 

Sx.   d'C: 

ij = i %7 + ^ (3-a-18) 

and the strain e..   is defined by 
iD 

The displacements are x.. 
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Differentiating Equations (3.a.17) and (3.a.18) with respect 
to time yields 

*ii " 2W4.. + XZejj 
■' (3.a.19) 

4.. = 2peij 

The corresponding strain rate tensor is then given in terms of the 
velocity gradient, 

,  3u.   3u. 
«ij = I (^cj + ^ 

with u.   and u.   the components of the. velocity. 

If Equation   (3.a.16)   is differentiated with respect to time 
we can compute p;   using Equation   (3.a.19)   for  t..  we obtain: 

1  • 
P = - 3 ^ii 

= - j [2^ + sxz^.rj 

= _ 2Ü+3X j.4^ = . k div G 

= -  k^ + ^ + ^ (3-a-20) 

We have defined the constant k, the bulk modulus, in terms of the 
Lami  constants y and X. 

Clearly Equation (3.a.20), obtained from Hooke's law is not 
consistent with Equation (3.a.l2).  In fact Equation (3.a.20) to- 
gether with Equation (3.a.l) yields 

dp _ k dp 
at ~ p at 

which can be integrated from the lower  limit   (p,p) = (0,po)   to the 
state   (p,p);  this yields for the pressure 

p = kLnd+p)     ,  M = ^ 1 (3.a.21) 
p0 
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Wilkins points out that Equation (3.a.21) can be expanded in a 
Taylor series for P/P0^1 to obtain a polynomial for p as a function 

of M.  Thus, Equation (3.a.12) should, for consistency, be close to 
Equation (3.a.21) but obviously cannot in general be the same.  To 
be consistent then, there is really no degree of freedom in the 
choice of the form for an equation of state Equation (3.a. 12) in the 
system (3.a.1)-(3.a.12) . 

One possible way to avoid the above inconsistency is to re- 
place the stresses T^. appearing in Equations (3.a.1)-(3.a.4) by 
the deviatoric stresses S. . and the pressure p through the use of 

Equations (3.a.9)-(3.a.11) and then eliminate Equations (3.a.9)- 
(3.a.11). The stress deviator S,, can also be eliminated by using 
Equation (3.a.14).  The resulting set of equations can be written 

g=-P^^+F) (3.a.22) 

p a! =   <sirp) li + <s22^ 0 

+ S   ^
V + iü, - V(Sll+S22+P) ,, B 251 + S12 (3¥ + 37} r  (3.a.25) 

as 

dS 
ii = 1^ (2^ _ |Z . ^ + Si  r|H . IX)     (3.a.26) dt  ~  3 v az   3r  r'    12 v3r   3z' 

^-MH^I-^^^-E)       <3.a.27, 

p = P(p,e) (3.a.29) 

We now have eight equations for the eight unknowns p,u,v,e, 
S11'S12'S22 and p'  EcJuations (3.a.22)-(3.a.29) are consistent. 
The only disadvantage of this set of equations is that Hooke's 
law of linear elasticity can not be recovered.  This is due to the 
fact that the pressure in Equation (3.a.29) is the thermodynamic 
pressure while Hooke's law does not attempt to include thermo- 
dynamic effects.  If nonadiabatic terms are included so as to pro- 
duce a modified Hooke's law then the relation (3.a.21) would be 
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modified to include temperature effects while the stress deviators 
S.. would be unchanged. Hence the quantities SJJ in Equations 

(3.a.22)-(3.a.29) are the stress deviators and an additional constant, 
i.e. k in Equation (3.a.20) (In addition to the shear modulus y), 
usually encountered in two dimensional linear elasticity, is elim- 
inated by the Inclusion of an equation of state (3.a.29). 

b) A Plastic Model 

Equations (3.a.26)-(3.a.28) express the stress-strain rela- 
tions for a material behaving with linear elastic properties. Be- 
fore we proceed, we first rewrite these equations in a more convenient 

form. He define the derivative ^r to be a tensor operator unaffected 

by rotations. Then, we construct this operator from the substantial 
derivative of the stress deviators 

DS11 

bt 
= dSl1  s  <3u 

dt    S12 (77 
- 3vi 

DS12 
Dt 

dS12 . SirS22 
= dt  '    2 

r3u 

DS22 
Dt 

- dS22 + S  (3u 

- at ' + si2 (TF 
3v. 

||) O.b.l) 

The time derivatives of the strain deviators can be written using 
the definitions: 

' 3u       1   -Su   .   3v  .  v. 
Ell = T? ' I (7¥ + 7? + r' 

2   3u       1  3v       1 v 
T3z"I3r'Ir (3.b.2) 

.        . 3v       1   ,3u   .   3v      v, 
e22 " 3r " I ^äz      är      r' 

I3u23v      Iv 
Taz      Tar'Ir 

G12 "  2   (37 + ^ 

Then, Equations (3.a.26)-(3.a.28) can be written so that the 
deviator stress components of the stress tensor are obtained from 
the deviator strain components of the strain tensor, i.e.. 

-11- 

uttam 



DSU. 
St-" 2yl11 

DS12 
Dt 2^12 

DS22 
Bt 2pe22 

(3,b.3) 

Equations (3.b.3) are applicable only in the elastic region of flow. 
In general a material which exhibits a linear variation of strain 
with stress is called linear elastic. However at the proportional 
limit the strain may increase more rapidly with increasing stress. 
In this region, the material deforms plastically.  If the strain is 
allowed to increase with no increase in the stress the material is 
called perfectly plastic.  If some variation in stress occurs the 
material is experiencing work hardening. 

A material when exposed to external loading can experience 
permanent deformation as stresses exceed certain characteristic 
limits of the material. A tacit assumption is made in elastic 
theory:  the assumption that a scalar function f(T-■,e?.,01), called 
a yield function, exists. Arguments T i-r 65 J  and ü) correspond to 
the stress state,  the plastic strain and a measure of  the loading 
history respectively. 

The equation 

f » 0 
represents a surface in stress space; for f < 0 the change in plastic 
deformation is zero while only when f=0 is plastic deformation 
allowed to occur.  If the material properties are independent of 
strain rate,f>0 has no meaning.  In the plastic region, in place of 
System (3.b.3), we invoke the Prandtl-Reuss2 formulation for plastic 
flow. 

In a mixed elastic plastic flow material, System (3.b.3) applies 
whenever 

1     s2
it 

1 <i, j <3 

2 (S^ + 822 + $!!   S22 + S^) < 2K
2    (3.b.4) 

with K a constant of the material.  However, whenever the von Mises 
yield condition, based on the assumed form for the yield function 
f=f{LS..), requires that 

2:sij I  2K2 (3.b.5) 
be satisfied, then System (3.b.3) is replaced by a viscoelastic 
model system patented after a viscoelastic constitutive relation 
of the form 

-12- 
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DS 11 
Dt-" ^^11  " ^ 

DS 12 
DT-' ^{i12 - XS12) (3.b.6) 

DS22 
Bri-2ll«22-XS22) 

Now the constant A   is determined by requiring equality in the 
von Mises yield criterion   (3.b.5)  rather than setting it to 1/2 pv, 
v  the kinematic viscosity of the material.    Multiply each Equation 
(3.b.6)   by S..  and sum: 

DS 
1    E^Ü^    (IS    i       -XZS2) (3.b.7) 

Now use the fact that Es?.   ■ 2K    = constant.    Equation   (3.b.7)  can 
then be solved explicitly for X, 

»■ ^ "i^ij (3.b.8) 

In cylindrical coordinates (3.b.8) can be expressed as 

X " ^5 lSll [U
Z " 

1/3 (uzz + vrr + ?>] 

+ S 22 [vr - 1/3 (uzz + vrr + |)] 

+ S12 (ur + VZ
) - {S11 + S22) 

= ^{S^U 
[? - V3 (uzz+ vrr+ ^] 

zz + S22 vrr + S12 (^) 

" tsll + S22) r 

Here we have used the notation g^ = uz» e
tc' 

-13- 
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In this way both the elastic and plastic regions can be de- 
scribed by Equation  (3.b.6).    The prescription Is 

Elastic^ 

<2K' 

A - 0 

or    ES 
ij 

2ir    and 

J:Sli^li-0  (unloadir'<') 
(3.b.9a) 

Plastic 
N: 2K 

X = 
2K 

zs.^.^o (3.b.9b) 

Equations   (3.b.9a)   and   (3.b.9b)   show that,   In the plastic 
region,   If one begins on the material yield surface,   and In the 
absence of unloading,  then one remains on the yield surface. 

Because of the complicated boundary conditions  together with the 
nonlinearlties of Equations   (3.b.9a)   and  (3.b,9b)  this  system must 
be  solved numerically.     If one uses a finite difference technique 
in the plastic region then the truncation errors Inherent in any 
difference scheme will result In a set of devlatorlc stresses which 
no  longer lie on the yield surface.     It is therefore necessary to 
change the finite difference schemes in the plastic region to insure 
that unloading does not occur due to truncation errors.     Thus,   X 
In the numerical method will not strictly be determined by Equation 
(3.b.9b)   but Instead the derivation of this formula will be used to 
force the yield condition to be satisfied numerically. 

In order to describe the method used, which is  second order 
accurate,  we assume that a solution is known at time t and we wish to 
determine the solution at time t+At.     The solution to Equation   (3.b.l0) 
with  X=0   (i.e.  the elastic case)   will be denoted by S?. .     Then,  by using 
a backward Taylor Series  in time one has -' 

Sij(t)  = Sij(t+At)   - At Sij(t+At) 

or 

(At) + ^L- si. (t+At)   + er((At)J) 

Si:.(t+At)   = Si;.(t)   + At Sij(t+At) 

- iA|L_ sVu+At) + e/((At)3) (3.b.l0) 

-14- 
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Using the differential Equation  (3.b.6) in Equation  O.b.lO) yields 
SM(t+At)  - S.Wt)  + 2Aty  ^^(t+At) 

- X(t+At)Sij(t+&t)]- 2y-i^- [e^Ct+At) 

X(t+At)S^ (t+At)-X{t)S. . (t)-, 
 ^V- ii—J     (3-b-11) 

Or introducing the elastic deviatorlc stresses, S?., Equation O.b.ll) 
can be written as ■* 

Sj. (t+At) = S®.(t+At) - 2Atu X(t+At) Si.(t+At) 

Aty I^X (t+At) Si. (t+At)- X(t)Si. (tl(3.b.l2 

Because all terms containing S-■ (t+At)  are linear,  we may  solve 
directly for the predicted deviatorlc stress at the advanced time 
level via 

Si.(t+At)   = otjs^ft+At)   - AtwX(t)Si:.(t)J (3„b.l3) 

All  terms on the right hand side of Equation   (3.b.l3)   are known 
except for a.    We determine a by requiring the SJ . (t+At)   to lie on 
the yield surface.    As before we square Equation     (3.b.l3)   and sum 
over 1 and j.    Then 

2 
2ir .1.    sJfj(t+At) =«2.;.   [s^.Ct+At) 

n2 
-  (At)yX(t)sij{t)l 

Solving for a we obtain 

a = 

J 1/2.J. rs?j(t+At)-AtyX(t)si.(t)] 
(3.b.l4) 

To sum up,  the procedure for solving Equation   (3.b.6)   is 
given by the following three step algorithm: 

■15- 
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1)  Determine S.j(t-t-At)   by solving Equation   (3.b.6)r  by any 
second order method, with X-0. 

11)   Test If Els®. (t+At)J2 < 2K2.     If true,  set 

S^.(t+At)   - S?. (t+At)  otherwise determine a from Equation   (3.b.l4). 

Ill)  Finally solve for the devlatorlc stresses at the advanced 
time level using 

S.^t+At)   = a [s^ (t+At)   -   (At)wA(t)S.j(t)] (3.b.l5) 

with 

(2K2;1 I  Smn(t)einn(t) 

1 <_m <_3 

1 <n < 3 

c) Transformed Differential Equation 

The partial differential equations described in section (3a), 
Equations (3.a.22)-(3.a.28), can b« written in quasilinear form, i.e. 

w. + A w + B w^ + - Cw = 0 t     z     r  r (3.c.l) 

-16- 
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K,  B and C are 7x7 matrlcles> their entries are given below: 

u p 0 0 

0 u 0 0 

0 0 u 0 

0 -T11/p -T12 u 

0 -^ T12 0 

0 0    • * :Tll-'t225 0 

0 h -T12 0 

0 0 

1/p 0 

0 -1/p 

0 0 

u 

0 

0 

u 

0 

0 

0 

0 

0 

0 

0 

u 

B= 

-T 

0 

v 

0 

12 

-T12 

i(TirT22)-,J 

T12 

P 

0 

v 

-T22/P 

2V/3 

0 

-4 

0 

0 

0 

v 

0 

0 

0 

0 

0 

0 

v 

0 

0 

■1/p 

0 

0 

0 

v 

0 

0 

-T22/P 

0 

0 

0 

V 
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where t^  - S^  - p6ij and finally 

V 0 0 0 0 0 0 

0 0 0 0 0 -1/p 0 

0 0 0 0 -1/p 0 -2/p 

0 Sll+S22 +p 0 0 0 0 0 

0 0 ^ 
0 0 0 0 

0 0 0 0 0 0 0 

0 0 ^v 0 0 0 0 

in Equation   (3.C.1)  w is the seven vector 

w= 
(3.c,2) 

If one introduces a general transforiTiuL.ion 

a = a(z,r) (3.C.3) 

3 =  ß(zfr) 

we can, by the chain rule rewrite (3.C.1) in the a-3 plane: 

wt + (Aaz + Bar) Wa + (B3r + h^)   wg 

+ ?(a,ß)CW=0- (3-C-4) 

•18- 
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In order to solve the system (3.C.4) by the second order Lax- 
Wendroff3 method, which uses a Taylor expansion for the solution 
vector w(t+At) about the initial data w(t) via 

2 
w(t+At) « w(t) + At wt + ^| wtt + »'(At

3)     (3.C.5) 

It is necessary to compute the second time derivative w..; the 
first time derivative is obtained directly from (3.C.4). 

It is sufficient to show how this is accomplished for a single 
component of w. For example the equation for the density, from 
Equation (3.C.1), is just 

P. + uP„ + vP,. + Pu + Pv,. + ^ = 0 (3.C.6) t    z    r    z    r   r 

The counterpart of Equation   (3.C.6),   in the  (a-3)   plane is 
just 

Pt + P(ozua + o.rva + ßrvß + ßzuß)  +   {uaz + vo.r)Pa 

+   (vßr + ußz)Pß  +5^^»  0 (3.c.7) 

Under the assumption that the coordinate system is independent of 
time we may compute the second time derivative of the density from 
Equation (3.C.7): 

Ptt = - Pt(Va 
+ "r^ + ßrvß + 3

2
uß) 

" p(azuta 
+ Vta + ßrvtß + K^ 

- «Vz + ^r^a " pta(uaz + ^r'    (3-c-8) 

- (vtßr 
+ WPß "   (vßr + ußz)Ptß 

-F(a,ß)(ptv ^V   = 0 

Now the terms on the right hand side of Equation (3.C.8) can be 
obtained from Equation (3.C.4) by taking the appropriate space 
differential.  For example the terms involving pta (and Ptg) are 
evaluated by operating on the first (second) component of System 

-19- 
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(3.C.4) with the differential operators ^ (y»-) . Cross deriva- 

tives of the velocity components are evaluated by taking appropri- 
ate space derivatives of the second and third components of the 
System (3.C.4).  In this way we find that only spatial derivatives 
appear in the differential relation describing the second time deri- 
vative of the density, 

2 2 2 
ptt= P(k ' h ' 7j ' W ' h)v (3-c-9) 

Here P is  a second order differential operator acting on w. 
In this manner all components of  the vector w..   may be computed. 

In the present study we considered    the class of  transformations 
to be restricted under  the assumptions 

a
Z  =  1 

3    = 0 (3.C.10) 
z 

Thus  ß  is  associated only with r while a can depend on both r and  z. 
Equation   (3.C.7)   is then simplified: 

p^  =  -   (u +  a v)P    -  P (u    + a v   ) Kt r  '   a v  a r  a' 

(3.C.11) 
PV 

"   3r(pv3 +VV  - ^(a.ß) 

We now write down the remaining components of System   (3.C.4) 
under condition   (3.C.10): 

The axial momentum equation  is  used  to obtain the rate of 
change of   the  axial velocity through 

ut =  -   (u +  arv)ua + ^(Tllfa ♦V^a) 

a     , 
S12,^    ,  S12 (3-C-12) 

The radial momentum equation is used to oL lin the rate of 
change of the radial velocity via 

v. = - (u + a v)v + -(S,-   + av.T:),  ) t r  a  pJ-2,a   x £1 ,a 
(3.C.13) 

2S22+S 

'r'" "3    P  '     pr 

T22>g,   '•"22'"11 (v-v0 -  
£-hi) + 

-20- 



A  o'  V-VV«'.;;"'' 

The rate of change of the specific internal energy is deter- 
mined from 

et - - (u + axv)6a  + i [(T11 + ars12)ua 

+   (S12 + V22)va]-   ßr[
veß (3.C.14) 

, n      vip+Si^+S-,) 
" ?<T22Ve + S12M    " pr 

The final  three equations   O.clS),   (3.C.16)  and   (3.C.17) 
determine the rate of change of the deviatoric stresses  S,.,   S12 

and S22 respectively.    The notation S,,   corresponds to S     ,   S,- 

to Szr and S22  to S    : 

S11/t = -   (u + aj.V)Sllfa  +   (f + arS12)ua 

"  <S12 J  ar TH "  er  [VS11,3 (3.C.15) 

2'. 
S12Uß  +  3 -VJ-f5 

Sirs221 S12,t = ~  (u + arv)S12,a + ar   ^-^V^)ua 

+ ( 11o 22 + v)v„ - ßr  (vS 2 '   ^"u -   ^r   rw12,3 (3.C.16) 

S22,t = "   (u + arv)S22,a -   'f + arS12)ua 

+   (S12 + ar |ü-)vo( (3.C.17) 

-  ßr(vS22ß + S12uß -^ß)  "I11? 

Equation   (3.C.12)   through   (3.C.17)   are valid for   ß^  0.     For 
the special case of flow on the axis of  symmetry,   ß= 0,   L'hospitals 
rule when applied to the above system.  Equations   (3.0.11)-(3.c.17), 
yields 
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Pt ' -  P\-  upa - 2Br pve O.c.lla) 

vt = 0 

(3.c.l2a) 

(3.c.l3a) 

et = " uea + p <TUua + 2ßrT22 '^ (3.c.l4a) 

5ll,t = " uSll,a + r (ua "  8rvß) 

S12,t =  0 

S22,t = * uS22,a " IrK '  ßrvß) 

(3.c.l5a) 

(3.c.l6a) 

(3.c.l7a) 

System  (3.C.11)   through   (3.C.17)  together with   (3.c.lla)   through 
(3.c.l7a)   are_the differential equations  solved  in a strip of 
thickness  6'^S2k,   A the spatial step size near the boundary of the 
domain.    This  is shown in the figure below by the crosshatched area. 

interpolation annulus 

 —^JC-' W3 
The thin annulus directly adjacent to the boundary is a region where 
mesh points lie too close to the boundary. Since the stability of 
the finite difference solution would not be satisfied in this region, 
interpolation between the boundary data and interior data is used 
to update the solution. 

It now is appropriate to describe the form of the differential 
equations used for the solution interior to the domain (the region I 
in the above figure).  Here we write the first four differential 
equations in conservation form choosing the entries of the vector w 
to be the quantities conserved across discontinuous transitions, i.e., 

/ \ 

w = pu 

pv 

£ \ * I 

■22- 



Here E is the sun of the specific Internal and kinetic energy, 
total energy, E - p(e + 1/2 (u2 + v2)). 

The continuity equation is 

the 

Pt + (Pu)z + (pv)r + £J « 0 

The axial momentum equation is 

(3.C.18) 

(pu)t + (pu - T11)Z + (puv - S12)r 

(puv-S,-) 
+ i=- = o (3.C.19) 

The radial momentum equation is 

(pv)t + (puv - S12)z + (pv - T22)r 

(pv2-2S22-S11) 
= 0   (3.C.20) 

Conservation of energy requires that E satisfy 

Et +    [(E -  t11)u - S12v]z    +   [JE -  ■r22)v-S12u]r 

(3.C.21) 
(E-T,,)V-S1-U 

+  — i=- =  0 

The stress strain relationships are not relationships that 
express a conservation principle. Hence they are rewritten here 
in their quasilinear component form: 

Sll,t + uSll,z + vSll,r + ^(-2uz + vr + F 

+ S12 ^z^r' = 0 (3.C.22) 

Sl2,t + uS12,z + vS12,r - ^ur + vz) 

S11~S22 
+ Jl^l  (ur-vz) = 0 (3.C.23) 

S22,t + uS22,z + vS22,r + r   (-2vr + uz + F' 

+ S12   «V^)   =  0 (3.C.24) 
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The specification of the equation of state, Equation (3.a.29), 
completes the system. 

Along the axis of symmetry System (3.C.18) through (3.C.24) 
are redefined by the application of L'hospital's rule. Hence in 
z-r coordinate along the line r=0, we obtain the system 

Pt + (pu)z + 2(pv)r = 0 {3.c.l8a) 

(pu)t +   (pu2 - T11)Z + 2(puv - S12)r = 0 (3.c.l9a) 

(pv)t =  0   ,   S^  +   2S22 =  0 (3.c.20a) 

TTJU  -  S^v   |,  +  2   j (E  -  T22)v -:t+  [(E - T11)U - s12V]z+ 2 [( 

" S12U r = 0 (3.c.21a) 

'11 ft 
T  uaH,Z 

r  IM¥r (3.c.22a) 

S;L2 t = 0 (3.c.23a) 

S,, . + US-, , + ip(u, - vr) = 0 (3.c.24a) 
22, t     22, Z   3   Z    r 

In a situation where the transformation to the a-B plane is 
the identity transformation, the System (3.C.18) through (3.C.24) 
augmented on the line ß= r = 0 with System (3.c.l8a) through (3.c.24a) 
would be the complete set of interior equations to be solved. 
However for transformations used in the present work (Equations 
(3.C.3) subject to (3.C.10)) the conservation form for the equations 
in the a-3 plane become 

(rBp)t + [rB(pu + arpv] a + (pv] ß + f^ = 0  (3.C.25) 

(rßpu)t +    [rß(Pu2 - T11 + ar(puv - S^ a 

I \ puv-S12 

+ rv - si2)3 + -^ = 0       (3'c-26) 

(r
ßpv)t + [rß(Puv - S12 + ar(pv2 " T22)il a 

2 
/ 2     \    Pv ~2S22"S11 

+ h ' T22)e
+   rßr        

0    (3-C-27) 
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(rßB,t +   [rß   ((E - Tll)u - S12v + ar((E -r22,v 

" S12u)ila +   [E- T22)v- S12u]ß 
(E-T95)v-S1,u 

+  ^T, ==- -  0 (3.C.28) 
r(3r 

The above four equations are augmented by the evolution equations 
for the devlatoric stresses in the cx-ß plane, Equations (3.C.15), 
{3.C.16) and (3.0.17). 

Along the axis of symmetry, 3=0, the above conservation laws 
reduce to 

(rßP)t + (rgPuV + 2/pvL= 0 (3.c.25a) 

(repu)t + [rß(pu
2 - T11)]a 

+ 2 [puv - S12]g= 0       (3.c.26a) 

(rgpv)t = 0  , 2S22 
+ Sj^ = 0 (3.c.27a) 

(rßE)t + [rß((E - Xll)u]a  + 2 [(E - T22) v 

- S12ulR = 0      (3.c.28a) 

The deviatoric stress componentscomp]eting System (3.c.25a)-(3.c.28a) 
are determined by (3.c.l5a), {3.c.l6a) and (3.c.l7a). 
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IV. Finite Difference Equations 

The partial differential equations described in Section III 
have been written in both conservation form and quasilinear form 
in the computational (a-ß) plane.  This is necessary since one set, 
the conservation form, is used at all points which are interior 
to the domain and contain all their eight nearest neighbors inter- 
ior to the domain.  The quasilinear form is used to construct the 
difference scheme to be used at interior mesh points which have at 
least one of the nearest neighbors exterior to the domain.  We start 
the discussion with the main difference scheme used, the two step 
method for the conservation form of the defining partial differen- 
tial equations. 

a) Two Step Method 

We wish to solve the set of equations defined in the previous 
section. Equations (3.C.18)-(3.c.24) , on a set of mesh points 

o^ = iAu , i = 0,1, ...,1 

jA3 , j = 0,1,... ,J (4.a.l) 

tn = nAt , n = 0,1,... 

For convenience we introduce the notation for the first four 
equations (3.C.18-3.C.21).  Let f,g and h be four vectors defined by 

and 

Pu 

PU -T 

Puv-S 

11 

12 

(E-T11)u-S12v/ 

g = 

h = 

/ 

\ 

pv 

puv- 
•S12 

pv2- -2S22- •Sll 

(E-T22)v. 
•S12U 

(E-T22)V-S12U 

(4„a.2) 
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Then with w - (p,pu,pv, E) we have 

1 
wt + f z + 9r 

+ F h - 0 

wt + fz + (g+h)r = 0 

r +  0 

r = 0 

(4.a.3) 

(4.a.3a) 

In the a-6 plane (4.a.3) becomes, after application of the chain 
rule 

or 

w^ + f  +oi  g +ßq0+ —— t   ex   r ga   r^ß  r(g) 

<r>  + 0  +^ + H-= 0 p
r t   pr a   M  '^r 

= 0 

(4.a.4) 

where f = f + ot g. 

Comparison of Equation (4.a.4) with the component forms. 
Equations (3.C.25)-(3.C.28), give the individual entries for the 

new flux vector f and g.  For the remainder of the discussion we 
drop the tilda on f. 

The approximate solution is called V; 

V(a,,Bj,tn) -V^ ^«(^.ß.,^) (4.a.5) 

The approximate solution is written as a two step difference 
equation. Predicted values V are first obtained at the midpoints 
(a, 1/2,ß .+1y2,t+nAt) of the mesh by a first order difference 

approximation. These values are then used to obtain a second order 
accurate solution at regular mesh points.  Letting X^ = At/Aa 

and X_ = At/Aß the finite difference equation for the first step 
is  l 
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viH/2,J*i/2 - ^iv;:l.j+i+ ^TA.i * "T.U * n,v 

v^rA.vi - 'ZU' '"Is C' 
(4.a.6a) 

Introducing the notation i=-f{V)   the second step is defined by 
the  finite difference equations 

,,n            ,,n-l       i /A\   /<:n"'l            *n-l .   -yn 
Vi, j   =  Vi,j   -  ^H^i+l, j   "   fi-l,j + ri+l/2,j+l/2 

ti-l/2,j+l/2  +  ^+1/2^-1/2 ^-1/2^-1/2' 

-   l/4*2(gi,j+l  "  gi,j-l  +  gi+l/2,j+l/2 

"  gi+l/2,j-l/2  + gi-l/2,j+l/2  " gi-l/2,j-l/2, 

i/4At(h-5+1 + h^^., + i/2(h;+1/2>j+1/2 

+  hi+l/2,j   +  hi-l/2,j+l/2   +  hi-l/2,j--l/2))/r(ßj) 

(4.a.6b) 
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Stability of the above difference scheme is achieved if an 
artificial viscosity Q is added to the right hand side of 
Equation   (4.a.6b) 

;)    -   lu.    -   U., Q-   K  jXiyUi+1#j    -   U^j,      Vvi+lfj    -    »ifj,    -    ,ui   -    Vi_V      vv^j 

-vi.j^sD-i^+i-^j'^i,^!-^^) 

-  ^i,j  "^i,:-!1    <Vi,j-Vi,j-l3[ (4.a.7) 
where u and v are equal to a  and ß   respectively   (Equation   (S.a.l1). 
The time step At is kept at approximately 2/3 of  the maximum allow- 
able CFL value,   i.e.. At =  .65 AtgpL   .    We compute the Courant- 
Friedrichs-Lewey time step by finding n, 

n   = max   ((u +N/aJ + 1 C)/Az,   (v + ßrC)/Arj 

over all mesh points.     The maximum time step is then AtCFL=  1/Dn. 

Equations   (3.C.22),   (3.C.23)   and   (3.C.24)   for the deviatorio 
stress components are solved in an entirely analogous manner. 

Now let wT =   (Sj^,  S12,   S22)   sT =     (p,u,v,e,S11,   S12,  S22),   and 

/ «  \ 

f = 

3' 

-   pv 

V 2 jpu 

/ 

g = 

/ 

2 
jViV 

- pu 

\ 

4 
• jMV 

h = 

JPV 

jyv 

(4.a.8) 

and define  the matricies a and b as 

DOS, 

a = 0    - 

0 

'12 

SirS22 

-S 12 

0      (4.a.9) 

-29- 

■■■.-■ --■^....- 



fl., 
^ >■■ ■ 

and 

\ 

-S 12 

Sll"S22   0    0    0   v   0 

s12    0 0    0   0   v 

Then introduce two transform matrices. A and B given in terras of 
a and b, A = a + (a+a b)/3 and B^b.  In vector notation the form 

used to generate the difference scheme, in terms of the above 
matrices, with ^ = (f + a g)/e is just 

* + fa + g + Awa + BW + ^ = o (4.a.10) 
r t 

If the terms with coefficients in Equation (4„a.l0) when put 
into difference form are centered, the same two step algorithm 
(4.a.6a) and (4.a.6b) results for the stress deviators w. 

b)  One Step Method 

The basis for the one step algorithm is the method proposed by 
Lax and Wendroff . As stated in Section 3, a Taylor series is used 
to determine the solution at time t+At from known initial data at 
time t via 

! ' 

w(t+At) = w(t) + At wt + 
At* 

wtt + Ö' (At
J) (4.b.l) 

In the last section we described how the system of equations (3.C.11)' 
(3.C.17) is solved using (4.bol) .  Reiterating briefly - one may 
solve the system (4.b.l) because w. is determined directly from the 
differential equations.  In order to evaluate the second time deri- 
vative one differentiates these same equations with respect to time. 
Two new cross derivatives appear - namely w . and Wg.;  these latter 
two are determined by directly differentiating the same system 
(3.c.11)-(3.c.17) first with respect to a and then differentiating 
with respect to 3. Back substitution of these two cross derivatives 
into the w.. equations leads to a differential form for (4,b.l) 

the right hand side of which is completely independent of deriva- 
tives with respect to time. 

We now plan to be quite specific. We will carry out all the 
indicated differentiation in the a-ß plane for Equation (4.b.l). 
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The time derivative of the continuity equation (3.C.11) is 

ptt " " <u + arv,pat " (ut + arvt,pa " pt(ua + Vo.) 

" p(uat 
+ «r^t' " er (ptv0 + pvßt + vpßt   (4•b•2, 

+ Vß)- F (ptv + ^ 

Observe the appearance of at and 3t cross derivatives.    They will 
be defined shortly. 

The time derivative of the momentum equations   (3.C.12)   and 
(3.C.13)   are 

utt = -   (u + arv)uo(t -   (ut + arvt)ua 

?   ^ll^t + 0rS12,at - r(Tll,a + arS12,a)] 

3r |vtu ß + vu$t-^i^ + 7S12#ßj 
(4-b-3) 

1 pt 
+  pr   (S12,t "   p~ S12, 

and 

vtt 

(4.b.4) 

"   (u + arv)vat "   (ut + arvt)va + F  [S12,at 

+ V22,at " r(S12,a + arT22,a)] 

"Mv^-et-^ + ^^e) 

+ ^(2S22,t + Sll,t - r(2S22 ^ll^ 

The cross derivatives in space and time also appear in the above 
two relations„ 
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The second time derivative of the internal energy is the 
relative complicated expression 

ett » -   <u + arv)eat "   <ut + arvt)ea 

+ ? [(Tll,t + arS12,t)ua +   (Tll + arS12)ucxt 

+   (S12,t + V22,t)va  +   <S12  + V22)vat 

-((T11 + «rSl2)ua +   (S12  + V22) va)] 

h 
(4.b.5) 

ee + ve3t -  p(T22,tve  + T22vßt 

+ si2,tue + si2ußt —(T22Vß  + S12 V'] 
- h [vt (p + s,, + s. '11   ■   -22  + v(Pt + Sll,t +  S22,t) 

v(p + S 11  +  S22)] 
The term p. is evaluated by considering p=p(t) and e=e(t) in 

Equation (3.a.29); hence pt = P Pt + Peet. 

The second time derivative of the deviatoric stress is 

Sll,tt = -   ^+  arv,Sll,at - (ut + arvt)Sll,a 

+ ( r + arS12)uat + arS12,tUa 

12 + ar I^'^t ~ S12fc 
va (4.b.6) 

- ßr(VtSll,ß 
+ vSll,ßt -  S12,tUE 

- S12u3t 
+ ¥ Vßt)  " £ vt 
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312,tt " "   <» + V)S12,at "   (ut + Vt)S12,a 
a 

+ _r  (2y . Sii + s^,^ . ^  (Si^t 

" S22,t)ua + i/2   (2W  + S11 - S22)vat 

'" "     ,6 (4.b.7) 

S 

(4.b.8) 

ßt 

^   <Sn,t " S22,t)va -er  [vtS12,( 

+ vS12,ßt " 1/2   W - hl + S22)u0t 

22,tt = -   (u + arv'S22,at "   (ut + arVS22,a 

-   (f + Vl2)u
at " arS12,tuu +   (S12 

+\ r>vat + S12,tVa *   ßr [vtS22,ß+ vS22, 

4u T 2u  vt + Si2,tu
e 

+ si2ußt - T- 
vetJ - r - 

On the axis of symmetry, ß=0, Equations (4.b.2)-{4.b.8) 
become 

Ptt = - uPat " 
utPa ■ pt ua " Puat 

- 2ßr(ptvß + pvßt) (4.b.2a) 

1 pt 
U..        =   -   UU    .    -   U.U      +   —    (T1n        .     -    Tn        ) tt at        t a       p   '  ll,at      p    ll,a 

2ßr pt {4.b.3a) 
+ ~   (S12,ßt " T S12,ß) 

vtt    = 0 (4.b.4a) 
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ätt ue
0t - uteo + p   (Tll,tua + Tll uat 

Pt 20 
p- T11U«,  + T  (T22/t

vß + T22Vßt (4.b.5a) 

r T22V 

'11,tt 

S12,tt    - 0 

4P 
uSll,at " utSll,a + T-  (uat "  ^^     (4-b-6a) 

(4.b.7a) 

,.     = - uSno  ^ - u,. S00  ^  - |ü  (u„.   -  ß vß.)   (4.b.8a) '22,tt '22,at      ut ö22,a       3     vuat       >Jrvßt' 

Vve must now compute the at and  0t cross derivatives which 
appear in the right hand side of the Systems   (4.b.2)-(4.b.8)  and 
{4.b.2a)-(4.b.8a);   first the at cross derivatives are computed 
followed by the  ßt derivatives. 

The continuity equation yields  for  the cross derivative of  the 
density  p t,   for  ß>0, 

pat = -   (u+arv)paa - 2   (ua +   arva)Pa -  P (uaa + arvaa) 

"   ^a Vß +  pVaß + Vapß + Vp
aß] (4-b-9) 

PVa  +   pav 

while on the axis of  symmetry,   ß=0,   the density satisfies 

2ßr(PaVß +  ^aß5   (4-b-9a) p  .   = - up       -  2u  p    -   pu at ^aa a a aa 

The cross derivative of the axial velocity u  .   for  3>0,  satisfies, 

u^,.   = -   (u + avju      -   (u    +  «„v  )   u at r       aa a r  a       a 

+ p   [Tll,aa + arS12,aa " f  (Tll»a + ^U.J] 

-  ß    f v u0 + vu       - ii^SÄ + Sl2r|P«] (4.b.l0) 
r \   a  ß aß p n

2     / 

+ i   (fill« - fl2p   ) 
r   l     p ? a' 
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while for ß»0 (4.b.l0) becomes 

uat " " uuaa " Va + ? (Tll,aa " f 'n^ , 

2ßr pa (4.b.l0a) 
+ ~p~ (S12.a6 " p~ S12,ß) 

The cross derivative of the radial velocity vat for ß
>0, satisfies, 

V   .   "  -   (u + c   v)v       -   (u.    + o   V   )   V at r     act       1
TX r a'    « 

Pa 
+  p"  I °1 ■>  r«f» »-T ■JO   nrt    "   n        '°1 •>  (Y p   |_S12,aa   +0lrT22,ota   'p      (S12,oi 

arT22,a)]   " ßr (vave   + ^aß^T^ (4-b-11) 
T22y6Pa\ ,   /

2S22ta
+Sll,c( 

~7r~'i    (    pr 

(2S
22+Sll,pot, 

while for 3=0   (4.b„ll)  becomes 

v  .   = 0 (4.b.lla) at 

The cross derivative of the internal  energy e  .   for ß>0,  satisfies, 

eat = "   (u + arv,eaa "   (ua  + arva)ea 

+ ? [(Tll,a + arS12,a,ua  +   (T11 + arS12)uaa 

+   (S12,a  + V22,a)va  +   (S12  + V22,vaa 

" r  ((T11 + arS12)ua  +   (S12 + V22)va)]      (4-b-12) 

"  'r  [v
a
eß    + vea3 " F(T22,avß + T22vaß + S12,auß 

(P+S11+S22) 
+ S12uaß)   "r  (^2vß  +S12uß^] -F[va 
,       jfa +Sll.a+S22,a)       vPa (P^^S^)-, 

P n2 J 
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while for ß-0   (4.b.l2)   becomes 

e .  ■ - ue      -ue    +—(T,,    U    + T , - U. at ua a a      p   *   11,a a 11 aa 

26. 
" F^llV   +-r  (T22,av0 (4.b.l2a) 

+ T22v
a6   - ^T22vß, 

Again,  the pressure derivative pa encountered above is treated in 
precisely the same  tashion as the derivative p.   described earlier. 
The cross derivative of  the deviatoric stress S,,  „,..  for ß>0, 
satisfien, 'll/Qtt 

'11,at lrv'all,aa 'r^^l^a 

+   <¥■ + arS12)uaa  + arS12,aua 

"   (Si2  + ^ f )vaS:  S12,ava  "   ßr(vaSll,( 

'aß) 

(4.b.l3) 

+ vS S,-,     u0  -  ST-U  0   + 11,aß      a12,auß '  012uaß  ^ 3~ 

2u     a 
'  3     r 

while  for  ß=0   (4.b.l3)   becomes 

S 4u uSll,aa " Vll.a + T1   (uaa "   Vaß»        (4.b.l3a) 11,at 

The cross derivative of the deviatoric stress S 
satisfies. 

'12,at 
(u + V)S12,aa- 

12,at 

(u  + a v )S 

for ß>0. 

12,a 

!| [2p - (S11 - S22)] uaa - ^(Sllf0l 

" S22,a)Ua + 1/2(S11 " S22 + 2^\a 
+ 1/2(tai,a- S22,a)va- er[VaS12,ß 

(4.b.l4) 

+ vS12.aß+ 1/2(S11 "  S22  "  2lj)uaß 

+ 1/2(Sll,a-S22 ,a'Uß] 
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while for 0-0 (4.b.l4) becomes 

S12/at - 0 (4.b.l4«) 

The cross derivative of  the devlatorlc stress S.0    .   for 0>O, 
satisfies, "'at 

S22,at - -   <" + arv)s22,aa   '  (ua + 0rva)S22,a 

"   «f + 0rS12,uaa " arS12,aua  +   (S12 + ar^\a 

(4.b.l5) 
+ S12,ava " 0r [vaS22,ß  + vS22,a0  + S12,auß 

+ Sl2%0 " ^ vaß] - f ^ 

while for ß=0 (4.b.l5) becomes 

S^o i. = - uS--   - u S--  - ■^•(u  - ß v 0J   (4.b.l5a) 22,at      22,aa   a 22,a  3 \ aa   r aß/ 

Now we state the results for differentiation of System (4.b.2)- 
(4.b.8) and (4.b.2a)-(4.b.8a) with respect to ß. 

The continuity equation yields for the cross derivative of the 
density pßt, for ß>0. 

ß~j. "   (u + a v)p  „ -   (u,, + a v.)o    -  D_(U    + a v ) Kßt       l r   /Kaß ß r ß'^a       ^ßl a        r a 

1' 
(4.b.l6) 

" P(u
aß + Vaß1   " er(2pßvß + pvßß + ^ßß1 

"   ^r'ß^^ + ^ß5   "?  V + pvß " ^Pv) 

"   (0lrVvpa + ^ 

while on the axis of symmetry, ß=0, (4.b.l6) reduces to 

Pßt =- 2(ßr)ß pvß {4.b.l6a) 
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Equation  (4.b.l6a)   is not used since   (^r)ß"0. 

The cross derivative of the axial velocity ug  ,  for ß>0, satisfies 

ußt - -   (" + arv)uaß -  <ue + arvß)ua + ? [Tll,aß 

pß n 
+ 0rS12,0ß " r (Tll,a + ^U.Jj 

' *r (Vß + vußß * ^ + !i^) (4-b-17) 

-(3r,ß(vu3.!^,+i(!^-!^ 

-^-^ßK-V) 
for  ß>0 while for  ß-0   (4.b.l7)  becomes 

g 

V " 2(ßr)ß-^tl (4.b.l7a) 

which is not used since u,  as well as  p,  is an even function. 

The cross derivative of the radial velocity v0.,  for  ß>0, satisfies 

vßt ' -   <u + arv>vaß "  (uß + arvß,vot 

i r Pö i 
p  LS12,aß +  arT22,aß "     p   (S12,a +  arT22,a)J 

^r  (vßvß + vvß3 " ^ + I^ ) (4•b•18, 

(ß  ,   (vv - I2M,  +  1  2S22fß
+Sllfß 

ßv     ß p    '       r p 

pr 

(2S22^11)pB       (2S22+S11)r6 

-   (a  )D(w    - -^t) v   r' ß ^     a p 
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while for ß-0   (4.b.l8)  becomei 

vßt " uvo0  +r(S12,aß  +  (ar)eT22,cx) 

- 0r(VßVß JUM^UM Ihi^ ) (4gb>18a) 

The cross derivative of the internal energy eß. , ß>0; satisfies 
the tedious relation pc 

eßt ■"   <u + V^aß "  <uß + arv0)e
a 

+ HT11,0 + arS12,ß,ua +  (tll + arS12,uaB 

+   (S12,0 + arT22,0)va +  (S12 + arT22)va0 

- ^ [(T11 + arS12)ua +   (S12 + arT22)va]| 

"  ßr [vßeß + veßß " ?(T22,ßvß +  T22vßß (4.b.l9) 

+ S12,ßuß  + S12ußß - ^(T22vß + S12Uß))] 

"   ^r'ß [veß -?(T22Vß + S12Uß)] 

- Jr [vß   (P  + Sll + S22)   + v(Pß + Sllfß 
+ S22,ß) 

-%{p + S11 +S22)   -^v   (p* S11+ S22)] 

"   ^r^^a-^a-^^V] 

which simplifies for  ß>0 

^t'  ^r'ß^ (4.b.l9a) 

Again Equation (4„b.l9a) is not used since e is an even function 
around ß=0. 
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The cross derivative of the deviatoric stress S 
for 0>O,   satisfies 11,ßt' 

)S1 Sll,ßt " "   <" + arv>Sll,a0 -   (uß + Vß    11'Cl 

+   ^ + 0rS12)uae  + Vl2,ßua 

-   (S12 + ar r-^aß - S12,ßva " 6r    Vl^ß 

2 

12^ 

while for  3=0   (4.b.20)  becomes 

+ vSll,ßß " S12,ßußß " Sl2ußß+3ii vßß 

u    + |iL v   \ 
a       3       a J 

(4.b.20) 

-  S 

Sn^t^-^^^ß (4.b.20a) 

Again   (4.b.20a)   is not used. 

The  cross derivative of  the deviatoric stress S12  ßt,   for 
ß>0,   satisfies 

Sl2,ßt = -   ^ +  «rv)S12,aß "   % + arvß)Sl2,a 

+ ^1  (2M -  S11 + S22)uae - ^  (Sllfß - S22f3)ua 

+  ^   ^  +  Sll  -   S22)Vaß +  1/2   (Sll,ß "  S22ie
)v

a 

"   ßr [VßS12,ß 
+ vS12,3ß " 1/2   {2v -  Sll  +  S22)Ußß 

+ ^   (Sll,ß "  S22,ß)uß] "   (Mß (vS12,ß        <4-b-21) 

- 1/2   (2y -  S11  + S22)uß)   -   (ar)ßfs12#a 

- 1/2   (2M -  S11  + S22)ua] 
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while for 0-0   (4.b.21)   becomes 
SirS22% S12,ßt - " uS12,a6 +  ^ + —T—)v

0ß 
S    "S 

+   (oir)ß{U -    11^  ?2)ua (4.b.21a) 

Finally,  the cross derivative of the deviatoric stress S22 a. 
for ß>0,  satisfies ' 

S22,ßt * "   (u + arv)S22,ae "   {uß + 0trv6)S22,ol 

"   «T1 + arS12)uae " arS12,ßucx +     (S12 

+ ar r") vaß + S12,ßva "  ß
r  (vßS22,ß 

+ vS22,ß6 + S12,ßuß + S12ußß " T- V
M)      (4-b-22) 

- I^i (Vo.!iv) . {K) (VS22,I 3" F   vvß      ~ v'        lMr'ß   V     22,ß 

+ S12Uß " rVß) "   (Vß  (vS22,a 

+ S12Ua " T \] 

while for ß=0   (4.b.22)  becomes 

S22,ßt=   «thT-v* (4-b-22a) 

Again  (4.b.22a)   is not used since S,-  is an even function about  3=0. 

It is clear then that Equation  (3.Co9)  may now be generalized 
to read 

wtt " P(3a'   3ß'   3aa '   3Sß'   3^w (4-b-23) 
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Since w. .  determined from Equation  (4.bo23)  Is multiplied by 
2 At    upon substitution into Equation  (4.b.l)  it is only necessary to 

evaluate the finite difference approximation of the spatial differ- 
ential operator P to first order accuracy.    It is precisely this 
fact that allows us to use uncentered finite difference approxima- 
tions to spatial derivatives of w and maintain the second order 
accuracy of the overall scheme.     Conversely it is precisely the lack 
of a fixed regular stencil caused by the boundary of the domain 
cutting the Eulerian mesh which leads to the relaxation of requiring 
and attaining a second order approximation to the second space de- 
rivatives. 

Whenever the.appropriate^eighbors are available the spatial 
derivatives ^a,  3

aa»3g    and 3OQ     are approximated by centered differ- 
ences which are second order accurate.    For example,   the component 
u    is approximated by 

ui^,rui-^3 
'tKöT 

and u       is approximated by 
u.   ,   .-2u.   .+u.   ,   . Ui-H,j   ^"1,3    i-l,] 

(Act)2 

and the error made through this approximation is of the order of 

(Ac)3. 

Whenever the points (i+l,j) or (1-1,j) are missing, these 
formulas are replaced by noncentered formulas of second order accur- 
acy.  For example, if the point (1+1,j) is missing and the distance 
between the point (i,j) and the boundary (along an a coordinate) is 
oi,>0 then u  is approximated by 

Aa 0,-Aa a 
ua ^(a^Aa)   UB + ä^r ui,j " Wia^MT ui-l,j   {4.b.24) 

aa while u^  is approximated by 

.       .J       "B "1,3   , "i 
aa        |a,(a,+Aa)       a,Aa       Aafa^ (4.b.25) 

In these formulas, uB is the value of u at the boundary point B; 

it is defined as the intersection of the boundary curve with the 
line 3=constant. 
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Finally for derivatives dr« cen-> jring Is not possible) how- 
ever a first order approximation is bufflclent.    For example 
u * at point {«.,6.)  could be approximated by 

- u, 

aß 

*l.j  '  "1-1.j  _ 
Aa  w 

ui.j-l - ul-l,j-l 
So 

This formula assumes that the points (i,j), (1-1,j) and (1-1,j-1) 
are the only interior points available. However, It Is not necessary 
to determine all the Interior neighboring points. 

In order to simplify the logic required in determing, at point 
(i,j), which interior neighboring points are available for use in 
approximating derivatives by difference quotients, it is convenient 
to partition the search procedure into two phases: a nearest neigh- 
bor search for the four nearest neighbors followed by a search for 
the four remaining neighboring points. Once one of '-he latter points 
is found it is used to find the approximation to u » in the double 
Taylor expansion for u given by 

i(a + Act, ß + Aß) = u(a,ß) + Aau + Aßu. 
a      p 

+ i(Aa2 u „ + 2AaAß u B + Aß^,,-,) aa aß 'ßß' 
(4.b.26) 

During the first phase of the boundary search about the point where 
u(a,ß) is interior to the domain of integration ua, Uo, u and UQQ 
are computed. Once it is determined that u(a+Aa, +Aß) is an interi or 
point   (here Aa,Aß    can be either positive or negative) 
puted from Equation  (4.b.26). 

c)    Too Near Points 

'aß is corn- 

There are a set of Interior points for which neither the two 
step nor the one step difference operators can stably produce an 
updated solution for the vector w. All such points lie within a 
thin annular region whose boundaries are the boundary of the domain 
and a boundary essentially parallel to the boundary of the domain 
a distance on the order of one third Aa or Aß,  All points lying 
within this band take values interpolated between interior and 
boundary data. 
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V. Treatment of the Boundary 

a)     Lagranglan Representation of  the Boundary 

The boundary of each domain is considered to be represented 
by a polygon whose vertices    are Lagranglan points moving with 
the local material velocity.    At each point 1 the differential 
equations 

dZi dri 

St" * ui      '    HF" = vl 1 ^ 1'2'""n (S.a.l) 

are solved for the coordinate pair   (z, ,r.)  given the velocity 
vector   (  i)   at the point iu     In computational space,  the ot-ß  plane, 

1 
Equation   (S.a.l)  becomes 

da. 
air = Vz + viar 

i =  1,2,...,n (S.a.l*) 

dß. 
air = uißz + vißr 

The values of velocity at each point on the boundary is known 
at the initial time so that the new boundary position is computed 
to be the polygon with vertices 

ai(t+At) = ai(t) + At(ui{t)az + vi(t)ar) 

(S.a.2) 

ßi(t+at) = 3i(t) + At(ui(t) ez + vi(t)ßr) 

The updated values of the velocity components at the new 
boundary position is obtained by a  space-time extrapolation from 
the interior.    The data chosen  for extrapolation to the kth  tracer 
particle  is  the nearest interior  neighbor of the kth point with 
coordinates   (ak(t+At),   ßk(t+At)),   iueu 

uk(ak(t+At),   ßk(t+At))   = u(a^
)ß:j

t)) 
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where a^  and ß. are chosen so that 

(ak(t+At) - ai(t))2 + { ek{t+At) - ß^t))
2 

is a minimum over all i and j; the values of i and j are mesh 
crossings interior to the domain of interest. 

It is possible to correct the boundary position using the 
latest values of the velocity components by using the corrector 
formula 

ai(t+At) = ai(t) + ^| (ü(t) + u{t+At)) 

3i(t+At) = ß^t) + ^| (v(t) + v(t+At)) 

(5.a.3) 

where u and v are the transformed velocity components in the tx-ß 
plane; they are given by the right hand side of Equation (S.a.l1). 
It has been found that in the numerical experiments carried out thus 
far, very little difference appears in the solution of the position 
of the boundary. This is probably due to the fact that the time 
step is very small being based upon the relatively high sound speed 
found in elastic materials.  On the other hand, boundary velocities 
are usually much smaller than the characteristic sound speeds so 
that, since the nearest neighbor is usually unchanged for the kth 

boundary point, the formula (5.a.2) is sufficient. 

The boundary is moved by the integration of the differential 
equations (S.a.l*), the integrands being obtained by extrapolation 
from interior data. As this boundary sweeps through the Eulerian 
mesh data must be defined at points on the boundary which coincide 
with the Eulerian mesh lines.  This set of points is used to 
augment the set of interior points when difference approximations 
to partial derivatives in the alpha and beta direction are computed 
(see Equations (4.b.24) and (4ob.25)). 

b)  Free Surface Boundary Conditions 

The boundary of any domain is composed of segments which con- 
stitute one side of a slip line, i.e., an interface, or a free 
surface.  In the later case, a purely hydrodynamic code only 
requires the vanishing of the pressure, 

p = 0 

as a boundary condition.     However,  for elastic domains,   the pressure 
is  just one component of the stress.    The proper condition is  that 
the normal stress must vanish: 

=  0 (S.b.l) 
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In order to compute T we let tani|/ measure the local slope of 

the boundary.  Let fi represent the local unit normal vector to the 
boundary 

(sinü/ \ 

COSlJj   / 

and £ represent the local unit tangent to the boundary 

(5.b.2) 

/ -cosijj \ 
t = (5.b.3) 

I    sinty 

Let  the stress matrix T be given by 

T=(Tl1   Tl2] (5.b.4) 
\T12  T22 / 

Then the normal stress in the normal dir,Jtion is 

2 
Tn«n =  T,,   sin ijj + 2T:,-  sinty cosij; 

2 
+ T22 cos «I» a 0 {5.b.5) 

Here Tij = S^ - pö.j. 

Equation (5.b.5), for a hydrodynamic material reduces to p=0. 

The tangential stress in the tangential direction 

Tt.t = T-I, sin ijj - 2T12 siniji oos^ + 152 cos ty (5.b.6) 

may be arbitrary. 

In addition the tangential component of the normal stress 
vanishes 

0 0 
Tn-t =   (T22 ~   T-i-Jsinijj cosij; -   T12*

COS
  ^ " sin ty'1 

=  0 (5.b.7) 
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Under conditions (5.b.5), (5.b,6) ana (5sb.7) we find that 
A  A       2 

T., - Tt't COB Ij» 

T12 " " ^^ sin''' Coa^ (5.b.8) 

A  A        « 

T22 " ^^ 8in "^ 

are the desired values of the components of the stress  tensor  in 
terms of the extrapolated values of  the  tensor T obtained  from 
the interior of the domain. 

c)     Interface Boundary Conditions 

The conditions to be applied  to the boundary at the interface 
are simple generalizations of  the  three conditions described  in 
the above section» 

First there is a kinematic condition which states  that the 
jump in the normal velocity at the  interface vanishes,   i.e. 

(u(:L)  - u(2))sin^  +   (v(1)   - v(2))cosi|/ = 0 (5.C.1) 

Here we have used superscripts to denote the material number on each 
side of the interface. Condition (5.<^.1) is just the algebraic 
counterpart of the jump condition [u«n] = 0 prescribed at the inter- 
face. 

A condition on the stress at the interface, is that [Tn»n] = 0 

„(1). „(1)         s(2)+ „(2) 
,22 + Sll     (1)   b22 +  Sll  .  (2). 
( 2 p 2   p  ' 

s(l)_ s(l)   s(2)_ s(2) 
+ ( 22 s 

11 ü-^—ii_) (cos2^ - sin2*)      (5.C.2) 

+ 2(S^2)  -  s|2) sini(/ cos* = 0 

A  A 

In addition on each side of the interface Tn*t = 0, i.e.. 
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ls22~ Sn) Bin* C0B"'' S^' (cos2ii/ 
2 

sin I|I) 

(5.C.3) 

^iV' sii)) 3in^ C08,'' S^) (cos2^ 2 
sin ij') 

{5.C.4) 

The quantity Tn»n is computed from each side of the interface. 
In order to assure that the normal velocity remains continuous we 
introduce a new value of Trf«n in terms of these computed value via 

(1) „^ '•(2)    (2) „A A(1) 
Tff.rf =  (1)  Pl2)  (5.C.5) 

A value of Tn«t is formed via the welded boundary condition 
assumption 

Tn-lT^ = Ti?.tA(2) = l/2(Tn.£(1) + Tn.t(2))   (5.0.6) 

The value of Tt«t is obtained from the interior of each side 
of the interface, i.e. both Tt«t' ', T^'t^2' are extrapolated 
along almost characteristic directions from the corresponding 
interior of each materialo 

We ^riow have the fact that given Tn^n from Equation (5.C.5) 
and Tn.lT from the welded ^boundary condition (5.C.6) as well as the 
extrapolated values of Tt«t from each side one can compute the stress 
components from the set of linear equations 

*  * 2 2 Tn-n + p =  2sini|; cosiji S,, + sin  ^ S,,   + cos   ^ S,- 

Tn-tT = -   (cos  ij; -  sin IJJ)S,2 -  sinij/ cosij;  S,, 

- Sini|; COS||; S-, 

Tt't + p = - 2sinij; cosi|j S12 + cos ^ S11 + sin ip S22 

The determinent of the above system is unity. 

-48- 

wnmittov'--^"-''- ■■■■■■ .. ..■-:..1 J:-^ . .... vfJ.,..,:...... 



, % 

By applying Kramer's rule we find 

S^l ■ Tn'n sin ii + Tt-t cos  i^ -  2Tn.t ain^i cosij/ + p (5.C.7) 

S12  *   (sin i/) - cos Hi)  Tn-t +   (Tn?n - Tt-t)   sinij/ cosi|( (5.C.8) 

S22  = T"*" cos * + 2T"'t  sini^ cosi>  + Tt-t sin2^ + p (5.C.9) 

The condition on the normal velocity of the interface  ux  is 
taken to be 

ux =   (p^  u^1' + p<2)  u(2))/(p^   +P<2), (S.c.lO) 

while the  tangential component u,,       ,  u,/        are extrapolated  from 
the corresponding interior positions along almost characxeristic 
directions. 

d)   Characteristic Equations 

We have carried out a formulation of the equations of motion 
at interface boundaries in characteristic form.     It is  desirable 
to  formulate the difference problem on a coordinate  system in which 
the two coordinates are locally orthogonal and parallel  to  the 
boundary.     Since the boundary will  exhibit a spatial variation in 
slope which will change in time,   it is convenient to recast  the basic 
differential equations in a form where differentiation  is automatic- 
ally  carried out in a direction more or  less normal  and  parallel  to 
the  boundary.     The corresponding difference scheme thus  generated 
can be aligned with the boundary - differences being taken  perpendi- 
cular and parallel  to the boundary. 

One  first takes an appropriate linear combination of  the 
momentum equations and constitutive relations,   i.e., 

^ + P2 "   (Sll,z + S12,r  + S-¥-> 

r Dv 2S22+Sll1 - tane [p^ + pr - (S12fZ + S22fr +  
22 ll)j 

_ sine f^fn _ 2^        . v "I 
r-7- LDt    3  l  z  vr  r' J 

OOS^-  [^-Mur+v2,] 
(S.d.l) 

+ sine 

p/p cose 

DS 
-  [^ - ¥  <-r - u2 - J,] . 0 
M/P 
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Then by introducing the definition of characteristic differentiation 
in terms of the particle derivative via 

. .1/2       1/2 

^ + (u + (Hjsine ) ^ + (v + (g-jcoie) ^ 

(5.d„2) 

Equation (5.d.l) can be written as 

, Tdu n-       dv   . H sin29 rdSll  dS22'|  cos29 aS12 p I   C08fl .     31noJ _ _^ ^    _    J_ =^ 
*-                                         ■J J  P/P             -J / P/P 

-3 /I                       0                        r 

= /t'/PjF (u sine - v cosö) + -jT- (S,, cos 6 + S-, sin' 

- p - 2 S12 sine cos6) + - (S12 cosG - (2S22 + S^)   sine) 

(5.d,3) 

This is the characteristic equaticr>2along the conoid with the local 
disturbances propagate with speed Cg = p/o , the shear speed, rela- 
tive to the particle speed. The angle 6 is measured from the image 
of the characteristic on the plane t=0 from the r axis and the 
directional derivative d/dCi defined in the plane t=0 and directed 
tangent to the base of the conoid, is defined by 

k = cose h - sin9 h (5-d-4) 

In addition to the ahear conoid, there appears another 
characteristic cone dctined from the characteristic speed 
2   2 C* = C + 4ij/3p, C being the sc ^ speed.  Obviously, disturbances 

wnich propagate at speed C, relative io the material particle speed 
will travel further in time At than an disturbances which travel 
at the shear speed Cg.  Hence, for wave notion in an elastic medium, 
the shear conoid lies inside the sonic conoid. 

In order to find the characteristic equations along the sonic 
cone we again take linear combinations of the continuity and momentum 
equations, compatability equations and the particle path equation 
which relates changes in pressure to density on a particle. The re- 
sult is 
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l|t„(,it,r + s) + Si^yltiH?[c|u tp 

-   (SU,S * S12 >t t !ii^-i/TTIZ; [Pu + Pr 

2S       + S11 

(S12,z*S22,r      22
r    ~^      c ]+i[§f-c2^] 

sin 2e rDSll _ In/,,.    _ v    . v."! 
" -pr-   Ll^ T^(2uz      vr      r'J 

2sine cose       j DS12        ,„    .  ,, »1 _ cos 2e 

(5.d.5) 

rDs22 

LDT 

2u   {2Vr . U2 . VjJ   = 

Equation   (5.d.5)   can,  after a fair amount of algebraic 
manipulation is performed,  be put into the characteristic  form 

^I^ sine dv 
at cos 0 + s 

2 dSll dS12     2 dS22 
- sin 9 g^ 2 sine cose *.       -  cos e g^^ 

= (^ - pC2) g-- fu cose - v sinej        (5.d.6) 

+ c/l + S   
d 

=/ 3pC 
^ j^ (sine cose (s11- s22) 

+ (cos e - sin e) s12) 

+ (2 S22 + S11)cos 

+ r>/'+ ^? [Si2 sine 

3] + (f pC2)v 

3pC 

'/r 

We have used the following definitions in Equation (S.d.6) 
The derivative in the bicharacteristic direction is 

d 
at ^ ^j1  *^  ^  Sin9 + fe COSe)   (5'd'7) 
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while the material particle derivative is given by 

fe-|r + uli + vlr (5-d-c) 

As before Equation (5.d.4) defj  . the directional derivative 
d/d( which is used in Equation (5.d. ) 

The method of computation is straight forward; the derivatives 
appearing in the above equations are replaced by differences in 
the direction in which the derivatives were defined.  For example. 
Equation (5.d.3) can be written in finite difference form as 

p^V1* (cose/1) u«1) -sine/1) v^)) 

- 2 sine/1) cose/1)^})- s'1), 

- (cos2e (1) - 8in2e (1)) s(1) icos o1     sin o1  )   b12 (5.d.9) 

=yp0
(1)M(1) (cose/1) u<0) - sine/1) v(0)) 

- 2 sine/1) cose/1) (s'J) - s^ 

+ At.  (difference approximations to the RHS of 
Equation (5.d.3)) 

The differencing is along a generatrix of the shear cone and 
along a line perpendicular to the generatrix In the z-r plane. 
This point of intersection is denoted by the superscript zero while 
the vertex of the shear cone is denoted t,y superscript one. The 
subscript one denotes the particular angle theta chosen to define 
the ray for the Integration; the superscript on the angle e denotes 
the material number.  Equation (5.d.9) as It now stands has been 
written on one side of the interface and therefore a similar relation 
must be written for the other side.  Thus, whenever we have a term 

o/1) it Is replaced by ei  » pi  is replaced by pi2), p ) Is 
(2)    (1)     m replaced by n* 'and u   and vv  are understood to be the velocity 

components at the vertex of the conoid on the other side of the 
Interface, i.e. u^) and v'*'.  This gives us a second algebraic 
equation representing integration along the shear cone to the inter- 
face from the second material. 
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The same procedure is now applied to Equation (S.d.6) with the 
exception that two angles along the dialatational conoid are chosen. 
In general these angles are distinct from those chosen for the shear 
conoid. This gives us four more algebraic relations for the twelve 
unknowns u(1). v*1*, p*1», 8$, 8$,  S™  and u(2), v«2', p«2', 
s(2)  .(2)  _(2) 

li   l2        " 
11 ' S12 ' S22 * 

One now looks at the basic stress strain relations which include 
the terms accounting for rotation: 

Sll,t " " (u S11,Z 
+ S12 vz " I^z» 

" (v Sll,r " S12 ur + T1 vr) " T1 F   (S.d.lOa) 

S12,t " " <u S12,z " ^ + !ii^i) vz 
s —s 

- (v Sl2ir  - (p - 11
2 

22) ur)       (S.d.lOb) 

S22,t = - (u S22,z - S12 vz  + Tiuz) 

" (v S22,r + S12 ur " 1^ vr, " f ?   (5-d-10c) 

If we neglect these rotation terms and multiply Equation 
(S.d.10a) and Equation (S.d.10c) by 3/2 they may be added to 
obtain 

lit (S11 + S22)   =P(UZ + vr - F^ (5-d-11) 

Equation  (S.d.lOb)  may now be added and subtracted to Equation 
(S.d.11)  to yield 

at [I (sn + s22) t si2] ^ [(^ ± ^ (u ± ^^ ^] (5'd'12) 

Equation (S.d.12) has a directional derivative, jjp defined 
along the particle path while the right hand side is expressed in 
terms of a fixed directional derivative, i.e. fixed along the 
directions + 4S degrees.  Integration of Equation (S.d.12) along 
the particle path on each side of the interface gives us two more 
independent algebraic relations for the twelve unknowns. The 
remaining four relations are obtained from the boundary conditions. 
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If the slope of the Interface is tanip » dz/dr then the con- 
tinuity of normal velocity yields 

(u(1)  - u(2))  sin* +  (v(1)  - v{2)) coeiii - 0 (5.d.l3) 

The remaining conditions are obtained from constraints on 
the stress tensor T: 

I 
Tll  T12 

T      T 
12   22 

(5.d.l4) 

Jet n  = ( ?_"!f I be the unit normal to the interface with slope \cos^. 

Continuity of tani^; therefore the unit tangent is t = \"c°ti. 
the normal stress, [Tn«n] = 0 yields our second 'boundary condition. 
Equation (5.C.2). 

'-■ {-• 

The remaining two conditions can be obtained^ by placing a con- 
dition on tj^e components of the normal stress, ^n,A in the tangential 
direction, t. We again invoked the condition Tn«t = 0 on side 1 
and side 2. 

Hence 

"(Sli)" S22^ &in,'' cos* " S^ icos2^ -  sin2^) = 0  (5.d.l5) 

'(Sn)' S22)) sin"'' cos,'' " su   t0082^ -  sin2*) = 0 (5.d.l6) 

are the required conditions. 

The entire system of equations can be written in the following 
form 

A w = b (5.d.l7) 
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where the unknown vector w has entries given by 

w 

while the coefficient matrix A of order 12 has row entries defined 
by 

1) Continuity of normal velocity, Equation (5.d.l3) 

2) Continuity of normal stress, Equation (5.C.2) 

3) Boundary condition, Equation (S.d.lS) 

4) Boundary condition. Equation (5.d.l6) 

5) Difference equations. Shear conoid material 1, 
Equation (S.d.9) 

6) Difference equations, Shear conoid material 2 

7) Difference equation, Dialatational conoid-material 1 
with angle 6,^, (difference form of Equation (S.d.6) 

8) Difference equation, sonic conoid-material 1 
with angle Bj*1) 

9) Difference equation, sonic conoid-material 2, 
with angle 6,t2) 

10)  Difference equation, sonic conoid-material 2, 
with angle e,*2) 

•5S- 
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11) Difference equation, Partiole path relationship for 
material 1, Equation (S.d.12) In difference form 

12) Difference equation, Particle path relationship for 
material 2, Equation (S.d.12) In difference form 

In the above listing the entries actually used In row 8 and 
row 10 are the differences of the two difference equations defined 

by Integration along the angles 6 3 
materials, 1=1,2. 

(1) e^for each of the 

The above formulation has been programmed and is presently 
undergoing testing. It is considered to be a prototype of methods 
which may be used to predict interactions of two dissimilar mater- 
ials undergoing elastic Impact. 
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VI. Results 

In order to demonstrate the versatility of the algorithm, 
two problems were considered.  The first problem consists of a 
penetrator composed of a 90/25 tungsten alloy impacting at 
0.142 cro/usec upon a one inch thick RHA plate. The configuration 
at moment of impact is shown in Figure (1). The second problem, 
shown in Figure (2), is a similar tungsten projectile but now 
enclosed in a Maraging-300 steel sheath. The impact velocity is 
the same as in the first problem.  Each material in both problems 
is assumed to have an equation of state which is given bv 
Tillotson: " ^     jr 

Compressed states: p=p 

P  = (a + — )EP + AC + B52 p > pn 
C       —,+1 0 

V 2 0 < E < E s 

where C = n - 1  , n = P/P0 

Expanded States: p=p 

E > E 
s 

Intermediate States: 

(E - E )p + (E! - E)p 

P E« - E* £ P < P0 
s   s 

E < E < E' s       s 

The constants used in the above equation of state for the 
present calculation are given in the following table. 
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The coefficient of viscosity K In Equation (4.a.7) was 
taken to be 1.8. The two transformations (2.1) and (2.2), which 
are presently coded Inline rather than in a function subprogr-im 
form, were used in each material. The constants for the trans- 
formations applied to each material domain are given in the 
accompanying table. 

Transformation (2.1) 

 rmax 
a*L=T72 d 

Transformation (2.2) 

D        q 

90/25 
Tungsten 17 1.75/16.5 1.75 Az"1 0 

RHA 24 9/23.5 0.5 Az"1 0 

Maraging-300 17 1.75/16.5 1.75 Az"1 0 

The constants used in the transformations for the projectile 
were chosen with d>r so that uniform spacing in r is achieved. — max 
For the target,  fine soacing in the region of impact is desired so 
d< r_ max 

'Che  mesh (i&a, jAß), which was chosen such that 1 <i <_I, 
1 <j <J, is given in the following table for each of the donains. 

in-right   j. i0-left 

90/25 
Tungsten 121 20 120 17 21 

RHA 31 25 25 24 16 

Maraging-300 61 20 60 17 11 

Here i. and j» represent respectively the initial a position 

of the material right justified on the mesh and the initial maximum 
height of the material in the ß direction. The initial starting 
value of i- left justified is also shown. The minimum value of jg 

is 1 for all domains. 
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The final configuration after 30 microseconds for the un- 
sheathed penetrator is shown in Figure 3. The letter P appears 
at each mesh point when the material is at a stress level which 
satisfies the yield condition. At such points the material be- 
haves plastically.  Figure 4 corresponds to the final state of 
the sheathed penetrator at 30 microseconds. At this time there 
is slightly less deformation of the nose of this penetrator com- 
pared to the unsheathed penetrator.  Because of the velocity and 
density ratio between the penetrator and target,, the rod is not 
significantly deformed during the penetration process except at 
the nose where some blunting and mushrooming of the Initial spheri- 
cal shape takes place. 

In both cases, Figurel (3) and (4) we see that the rod has 
completely penetrated the target and is emerging from the far face. 
Since spall and other fracture mechanisms have not been incorpor- 
ated into the present model, plugging is not accounted for; ob- 
viously the back face of the target has stretched beyond that which 
would occur for RHA. 

Figure (5) compares the pressure history at the interface on 
the axis of symmetry of the penetrator for both of the above prob- 
lems, while Figure (6) compares the pressure history in the target 
for both problems.  The Ö symbol is the two material curve while the 
A is the three material curve.   For this high velocity, the 
pressure Is continuous across the Interface since the stress 
level is on tht order of 1/10 the pressure levels. Thus, on the 
scale being plotted, both sets of curves, penetrator and target, 
are nearly coincident. Figure (7) is a plot of the penetration 
depth D vs time. Over the first 20u seconds the penetrator leading 
edge is moving at an average speed of -.06 cm/ysec. It is clear, 
from this graph, that the speed is increasing since the target is 
failing beyond this time. Similar behavior is exhibited for both 
problems. At 30y sec, the sheath is still moving at -0.142 cm/psec. 
as is the penetrator for approximately the last 90% of its length. 
Hence the residual velocity, although not computed by integration 
over the volume region of space defining the projectile is on the 
order of >.9 initial velocity. 

I 
Computed stress levels in the sheath at this time are low. 

The maximum pressure, at the interface near the leading edge, is 
approximately one kilobar but on the average the pressure lies be- 
tween one kilobar and one hundred bars. Maximum and average stress 
levels are similar.  The maximum pressure transmitted to the target 
is somewhat larger for the sheathed rod impacting although the 
pressure histories are similaro  In both cases, the projectile re- 
mains compressive near the leading edge out to 25 microseconds. 

For the unsheathed penetrator problem, approximately 250 mesh 
points were used in the targets and 2000 points in the penetrator. 
This problem ran to 30 microseconds problem time in 2271 seconds on 
a CDC 6600. For the problem with sheath the target and the pene- 
trator have the same number of points as the first problem, while 
the sheath contained 1000 mesh points. The computation time for 
this problem is 2169 seconds. 
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